Bài 5 – 6 – 7:

KHÁI NIỆM HÀM SỐ

MẶT PHẰNG TỌA ĐỘ

HÀM SỐ y = ax (a ≠ 0)

–o0o–
        Nếu một đại lượng y phụ thuộc vào một đại lượng thay đổi x sao cho một giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x, và x gọi là biến số.

1. Hàm số được cho bằng hai dạng : bảng và công thức.

a. Hàm số dạng bảng :

x012345
y1357911

b. Hàm số bằng công thức (dạng tường minh):

y = f(x)

f(x) là biểu thức đại số với biến x.
Ví dụ :
y = 2 : hàm hằng.
y = 2x +1: hàm số bậc nhất
y = x2 +2x -1: hàm số bậc 2
y=\frac{2x+1}{x-1}  hàm số nhất biến .v .v …
3. Đồ thị của hàm số :
3.a. Định nghĩa :
Đồ thị của hàm số y = f(x) là tập hợp các cặp giá trị tương ứng (x ; f(x)) trên mặt phẳng tọa độ.
b. mặt phẳng tọa độ Oxy :
 * Ox :trục hoành.
* Oy : trục tung.
* O : gốc tọa độ.
* ( I) góc phần tư thứ I, (II) góc phần tư thứ iI,( III) góc phần tư thứ III,( IV) góc phần tư thứ IV.
c. Biểu diễn tọa độ một điểm A trên mặt phẳng tọa độ Oxy:
Ta có : A(x; yA) trong đó :     xA: hoành độ của điểm A .
yA: hoành độ của điểm A .
ví dụ Biểu diễn tọa độ một điểm A(2 ; 3)
vẽ đồ thị của một hàm số trên mặt phẳng tọa độ:
y = x2 +2x – 1 (c); y = 2x + 1 (d)

4. Vị trí tương đối giữa điểm và đồ thị hàm số :

cho A(x; yA) và hàm số y = f(x) có đồ thị (c). A thuộc (c) khi yA = f(xA)
ví dụ : A(1 ; 2) và B( -2 ; 1) có thuộc y = f(x) = x2 +2x – 1 (c)

giải.

Tính : f(xA) = f(1) = 12 +2.1 – 1 = 2 = yA
=> A € ( c).
f(xB) = f(-2) = (-2)2 +2.(-2) – 1 = 2 = -1 ≠ yB
=> B không nằm trên (C).
Đồ thị của hàm số y = ax :
Đồ thị của hàm số y = ax là đường thẳng đi qua gốc tọa độ.