Bài 6

Định lí vi-ét  và ứng dụng

–o0o–

Định lí viet  thuận :
Nếu phương trình bậc hai có dạng : ax2 + bx + c = 0 (a ≠ 0) có 2 nghiệm phân biệt x1, x2 thì
x_1+x_2=\frac{-b}{a}
x_1.x_2=\frac{c}{a}
Định lí viet  đảo :
Nếu ta có hai số u, v có u + v = S và u.v = P thì u và v là nghiệm của phương trình :
X2 – SX + P = 0

=================================

BÀI TẬP BỔ SUNG :

Bài 1 :  Cho phương trình: x2 + mx + 2m – 4 = 0 (1) (x là ẩn số)
a) Chứng minh phương trình (1) luôn luôn có nghiệm với mọi giá trị của m
b)  Tìm  m để  phương trình có hai nghiệm thỏa:   x_1^2+x_2^2=4

GIẢI.

a)
Δ = b2 – 4ac = m2 – 4.1.( 2m – 4)  = m2 – 8m + 16
= m2 – 2.4.m + 42 = (m – 4)2 ≥ 0 với mọi m.
=> Δ≥ 0 với mọi m.
=> phương trình (1) luôn luôn có nghiệm với mọi giá trị của m
b) theo định lí viet :
x_1+x_2=\frac{-b}{a}=-m
x_1.x_2=\frac{c}{a}=2m-4
Theo đề bài :
x_1^2+x_2^2=4
<=>(x_1+x_2)^2-2 x_1.x_2=4
=>m^2-2(2m-4)=4
<=>m^2-4m+4=0
<=>(m-2)^2=0
<=> m – 2 = 0
<=> m = 2
Vậy : m = 2.