Phương pháp chứng minh 2 tam giác bằng nhau (cạnh – cạnh – cạnh)
Bài 1 :
BÀI 32 SBT TRANG 141 :
Cho tam giác ABC có AB =AC, M là trung điểm của BC. Chứng minh rằng AM vuông góc BC.
Giải.
AB =AC (gt)
MB = MC (M là trung điểm của BC)
AM cạnh chung
=> ΔAMB = ΔAMC (c – c – c)
=>
Mà : (hai góc kề bù)
=>
Hay AM BC.
Bài 2 :
Cho tam giác ABC có AB =AC, trong tam giác ABC lấy điểm M sao cho MB = MC . Chứng minh rằng AM là phân giác của .
Xét ΔABM và ΔACM , có :
AB = AC (gt)
AM = BM (gt)
AM cạnh chung.
=> ΔABM = ΔACM (c – c – c)
=> (góc tương ứng)
VẬY : AM là phân giác của
========================
Bài 3 :
Cho tam giác ABC có AB =AC. Gọi M là trung điểm của BC. chứng minh :
- AM là đường trung trực của BC.
- kẽ đường phân giác Ax của góc ngoài A. chứng minh : Ax // BC
Xét ΔAMB và ΔAMC, ta có :
AB =AC (gt)
MB = MC (M là trung điểm của BC)
AM cạnh chung
=> ΔAMB = ΔAMC (c – c – c)
=>
Mà : (hai góc kề bù)
=>
Hay AM BC tại M.
mà : M là trung điểm của BC (gt)
vậy : AM là đường trung trực của BC
2. Ax // BC
ta có : (góc tương ứng của ΔAMB = ΔAMC)
=>AM đường phân giác của góc A.
=>
mà : (đường phân giác Ax của góc ngoài A )
nên :
mà :
=>
hay : AM Ax.
mà :AM BC (cmt)
vậy : Ax // BC.
Bài 4 : Cho tam giác ABC. Kẻ AH vuông góc với BC tại H trên nửa mặt phẳng BCA không chứa điểm B. Vẽ tam giác ACD sao cho AD = BC , CD = AB . Chứng minh:
a, AB // CD
b, AH vuông góc với AD
a, AB // CD
b, AH vuông góc với AD
a) cm : AB // DC
Xét ΔABC và ΔCDA , ta có :
AB = CD(gt)
BC = AD (gt)
AC cạnh chung.
=> ΔABC = ΔCDA (c – c – c)
=> (góc tương ứng)
=> AB // DC ( so lo trong)
b) AH vuông góc với AD
Ta có :
cmtt, ta được : AD // BC
mà : AH ⊥ BC (gt)
=> AH ⊥ AD
Xét ΔABC và ΔCDA , ta có :
AB = CD(gt)
BC = AD (gt)
AC cạnh chung.
=> ΔABC = ΔCDA (c – c – c)
=> (góc tương ứng)
=> AB // DC ( so lo trong)
b) AH vuông góc với AD
Ta có :
cmtt, ta được : AD // BC
mà : AH ⊥ BC (gt)
=> AH ⊥ AD